Depletion of AADC activity in caudate nucleus and putamen of Parkinson’s disease patients; implications for ongoing AAV2-AADC gene therapy trial
نویسندگان
چکیده
In Parkinson's disease (PD), aromatic L-amino acid decarboxylase (AADC) is the rate-limiting enzyme in the conversion of L-DOPA (Sinemet) to dopamine (DA). Previous studies in PD animal models demonstrated that lesion of dopaminergic neurons is associated with profound loss of AADC activity in the striatum, blocking efficient conversion of L-DOPA to DA. Relatively few studies have directly analyzed AADC in PD brains. Thus, the aim of this study was to gain a better understanding of regional changes in AADC activity, DA, serotonin and their monoamine metabolites in the striatum of PD patients and experimentally lesioned animals (rat and MPTP-treated nonhuman primate, NHP). Striatal AADC activity was determined post mortem in neuropathologically confirmed PD subjects, animal models and controls. A regional analysis was performed for striatal AADC activity and monoamine levels in NHP tissue. Interestingly, analysis of putaminal AADC activity revealed that control human striatum contained much less AADC activity than rat and NHP striata. Moreover, a dramatic loss of AADC activity in PD striatum compared to controls was detected. In MPTP-treated NHP, caudate nucleus was almost as greatly affected as putamen, although mean DA turnover was higher in caudate nucleus. Similarly, DA and DA metabolites were dramatically reduced in different regions of PD brains, including caudate nucleus, whereas serotonin was relatively spared. After L-DOPA administration in MPTP-treated NHP, very poor conversion to DA was detected, suggesting that AADC in NHP nigrostriatal fibers is mainly responsible for L-DOPA to DA conversion. These data support further the rationale behind viral gene therapy with AAV2-hAADC to restore AADC levels in putamen and suggest further the advisability of expanding vector delivery to include coverage of anterior putamen and the caudate nucleus.
منابع مشابه
Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the DDC gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associa...
متن کاملCarbidopa-Based Modulation of the Functional Effect of the AAV2-hAADC Gene Therapy in 6-OHDA Lesioned Rats
Progressively blunted response to L-DOPA in Parkinson's disease (PD) is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino a...
متن کاملGene therapy for aromatic L-amino acid decarboxylase deficiency.
Aromatic L-amino acid decarboxylase (AADC) is required for the synthesis of the neurotransmitters dopamine and serotonin. Children with defects in the AADC gene show compromised development, particularly in motor function. Drug therapy has only marginal effects on some of the symptoms and does not change early childhood mortality. Here, we performed adeno-associated viral vector-mediated gene t...
متن کاملChallenges for gene therapy of CNS disorders and implications for Parkinson's disease therapies.
The CNS poses significant challenges for effective gene therapy, including the presence of the blood–brain barrier, which prevents the entry of large molecules. Adenoassociated viral (AAV) vectors have been developed that demonstrate efficient and stable transgene expression in the CNS and are the most advanced vector class in clinical application, but limitations still manifest. One of them is...
متن کاملSubregional 6-[F]fluoro-L-m-tyrosine Uptake in the Striatum in Parkinson’s Disease
Background: In idiopathic Parkinson’s disease (PD) the clinical features are heterogeneous and include different predominant symptoms. The aim of the present study was to determine the relationship between subregional aromatic l-amino acid decarboxylase (AADC) activity in the striatum and the cardinal motor symptoms of PD using high-resolution positron emission tomography (PET) with an AADC tra...
متن کامل